acetylcysteine has been researched along with (3S,5S,6E)-7-[3-(4-fluorophenyl)-1-(propan-2-yl)-1H-indol-2-yl]-3,5-dihydroxyhept-6-enoic acid in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (50.00) | 29.6817 |
2010's | 1 (50.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Lóopez-Marure, R; Massó, FA; Montaño, LF; Páez, A; Rodríguez, E; Sánchez, CA; Varela, E; Zapata, E | 1 |
Cai, DQ; Kim, CS; Kim, DH; Kim, SK; Lee, KJ; Qi, XF; Qin, JW; Wu, Z; Yu, YH; Zheng, L | 1 |
2 other study(ies) available for acetylcysteine and (3S,5S,6E)-7-[3-(4-fluorophenyl)-1-(propan-2-yl)-1H-indol-2-yl]-3,5-dihydroxyhept-6-enoic acid
Article | Year |
---|---|
Statin-induced inhibition of MCF-7 breast cancer cell proliferation is related to cell cycle arrest and apoptotic and necrotic cell death mediated by an enhanced oxidative stress.
Topics: Acetylcysteine; Antineoplastic Agents; Antioxidants; Apoptosis; Atorvastatin; Breast Neoplasms; Cell Cycle; Cell Line, Tumor; Cell Membrane; Cell Proliferation; DNA Replication; Dose-Response Relationship, Drug; Fatty Acids, Monounsaturated; Female; Fluvastatin; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Indoles; Membrane Potential, Mitochondrial; Necrosis; Oxidative Stress; Pyrroles; Reactive Oxygen Species; Simvastatin | 2008 |
HMG-CoA reductase inhibitors induce apoptosis of lymphoma cells by promoting ROS generation and regulating Akt, Erk and p38 signals via suppression of mevalonate pathway.
Topics: Acetylcysteine; Acyl Coenzyme A; Animals; Antioxidants; Apoptosis; Atorvastatin; bcl-2-Associated X Protein; Caspase 3; Cell Line, Tumor; DNA Fragmentation; Extracellular Signal-Regulated MAP Kinases; Fatty Acids, Monounsaturated; Fluvastatin; Heptanoic Acids; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Indoles; Lymphoma; Membrane Potential, Mitochondrial; Mevalonic Acid; Mice; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Poly(ADP-ribose) Polymerases; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-bcl-2; Pyrroles; Reactive Oxygen Species; Signal Transduction; Simvastatin | 2013 |